Characterizations of Strong Strictly Singular Operators
نویسندگان
چکیده
منابع مشابه
Characterizations of strictly singular operators on Banach lattices
New characterizations of strictly singular operators between Banach lattices are given. It is proved that, for Banach lattices X and Y such that X has finite cotype and Y satisfies a lower 2-estimate, an operator T : X → Y is strictly singular if and only if it is disjointly strictly singular and 2-singular. Moreover, if T is regular then the same equivalence holds provided that Y is just order...
متن کاملDomination by Positive Disjointly Strictly Singular Operators
We prove that each positive operator from a Banach lattice E to a Banach lattice F with a disjointly strictly singular majorant is itself disjointly strictly singular provided the norm on F is order continuous. We prove as well that if S : E → E is dominated by a disjointly strictly singular operator, then S2 is disjointly strictly singular.
متن کاملoperators on L ( L p ) and ` p - strictly singular operators
A classification of weakly compact multiplication operators on L(Lp), 1 < p < ∞, is given. This answers a question raised by Saksman and Tylli in 1992. The classification involves the concept of `p-strictly singular operators, and we also investigate the structure of general `p-strictly singular operators on Lp . The main result is that if an operator T on Lp , 1 < p < 2, is `p-strictly singula...
متن کاملCHARACTERIZATIONS OF OPERATOR ORDER FOR k STRICTLY POSITIVE OPERATORS
Let Ai (i = 1,2, · · · ,k) be bounded linear operators on a Hilbert space. This paper aims to show a characterization of operator order Ak Ak−1 · · · A2 A1 > 0 in terms of operator inequalities. Afterwards, an application of the characterization is given to operator equalities due to Douglas’s majorization and factorization theorem. Mathematics subject classification (2010): 47A63.
متن کاملA Property of Strictly Singular 1-1 Operators
We prove that if T is a strictly singular 1-1 operator defined on an infinite dimensional Banach space X, then for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of X such that Z ∩ Y is infinite dimensional, Z contains orbits of T of every finite length and the restriction of T on Z is a compact operator.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Mathematics
سال: 2013
ISSN: 2314-8071
DOI: 10.1155/2013/834637